Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time

نویسندگان

چکیده

Abstract We exhibit a randomized algorithm which, given square matrix $$A\in \mathbb {C}^{n\times n}$$ A∈Cn×n with $$\Vert A\Vert \le 1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">‖A‖≤1 and $$\delta >0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">δ>0 , computes high probability an invertible V diagonal D such that $$ \Vert A-VDV^{-1}\Vert \delta xmlns:mml="http://www.w3.org/1998/Math/MathML">‖A-VDV-1‖≤δ using $$O(T_\mathsf {MM}(n)\log ^2(n/\delta ))$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">O(TMM(n)log2(n/δ)) arithmetic operations, in finite $$O(\log ^4(n/\delta )\log n)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">O(log4(n/δ)logn) bits of precision. The computed similarity additionally satisfies V\Vert V^{-1}\Vert O(n^{2.5}/\delta )$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">‖V‖‖V-1‖≤O(n2.5/δ) . Here $$T_\mathsf {MM}(n)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">TMM(n) is the number operations required to multiply two $$n\times n$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">n×n complex matrices numerically stably, known satisfy {MM}(n)=O(n^{\omega +\eta })$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">TMM(n)=O(nω+η) for every $$\eta xmlns:mml="http://www.w3.org/1998/Math/MathML">η>0 where $$\omega xmlns:mml="http://www.w3.org/1998/Math/MathML">ω exponent multiplication (Demmel et al. Numer Math 108(1):59–91, 2007). variant spectral bisection numerical linear algebra (Beavers Jr. Denman 21(1-2):143–169, 1974) crucial Gaussian perturbation preprocessing step. Our result significantly improves previously best-known provable running times $$O(n^{10}/\delta ^2)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">O(n10/δ2) diagonalization general (Armentano J Eur Soc 20(6):1375–1437, 2018) (with regard dependence on n ) $$O(n^3)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">O(n3) Hermitian (Dekker Traub Linear Algebra Appl 4:137–154, 1971). It first achieve nearly time any model computation (real arithmetic, rational or arithmetic), thereby matching complexity other dense as inversion QR factorization up polylogarithmic factors. proof rests new ingredients. (1) show adding small splits its pseudospectrum into well-separated components. In particular, this implies eigenvalues perturbed have large minimum gap, property independent interest random theory. (2) give rigorous analysis Roberts’ Newton iteration method (Roberts Int Control 32(4):677–687, 1980) computing sign function itself open problem since at least 1986.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Diagonalization of Nearly Diagonal Matrices

In this paper we study the effect of block diagonalization of a nearly diagonal matrix by iterating the related Riccati equations. We show that the iteration is fast, if a matrix is diagonally dominant or scaled diagonally dominant and the block partition follows an appropriately defined spectral gap. We also show that both kinds of diagonal dominance are not destroyed after the block diagonali...

متن کامل

Matrix multiplication operators on Banach function spaces

Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix

The ε-pseudospectral abscissa and radius of an n × n matrix are respectively the maximal real part and the maximal modulus of points in its ε-pseudospectrum, defined using the spectral norm. Existing techniques compute these quantities accurately but the cost is multiple singular value decompositions and eigenvalue decompositions of order n, making them impractical when n is large. We present n...

متن کامل

Minimizing the Communication Time for Matrix Multiplication on Multiprocessors

We present one matrix multiplication algorithm for two{dimensional arrays of processing nodes, and one algorithm for three{dimensional nodal arrays. One{dimensional nodal arrays are treated as a degenerate case. The algorithms are designed to utilize fully the communications bandwidth in high degree networks in which the one{, two{, or three{dimensional arrays may be embedded. For binary n-cube...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2022

ISSN: ['1615-3383', '1615-3375']

DOI: https://doi.org/10.1007/s10208-022-09577-5